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INTRODUCTION AND HISTORY

The discovery of double refraction in a erystal of
iceland spar (calcite) by Bartholinus (1) in 1669, the
discovery of the polarization of light by using bwo
such crystals in 1690 by Huvghens (2), followed then
by the interactions of polarized light with other mate-
rials eventually led to the development of optical
crystallography.

Mathematical descriptions, based both on classi-
cal and modern physics to explain phenomena such
as these, are complicated and cumbersome. MNoting a
need for understanding and describing polarized
light without complicated mathematics, George G.
Stokes empirically determined what is now known as
the Stokes Vector in 1852 (3), which can describe vari-
ous polarization types and forms. In 1892 Henri
FPoincaré (4) proved that all possible polarization
states described by the classical polarization ellipsoid
can be represented by peints on a sphere, the
Paincaré Sphere, and that different polarization states
are easily related to each other by various phase
shifters (retarders, wave plates, compensators) placed
in a given optical train, if one knows their proper
location and orentation on the sphere, followed by
rotation of the sphere. Further contributions by both
Mueller and Jones with their calculi in the 19405
extended conceptualization and computation of
polarized light/ matter interaction phenomena.

This paper will provide an introduction to these
topics and demonstrate their benefits to the optical
researcher polarized light microscopist by consider-
ing numerous simple experimental optical trains, cal-
culating the final polarization state that results by
using the Mueller calculus, and predicting and inter-
preting some of these results by means of the
Paincaré Sphere.

THE STOKES VECTOR

The Stokes vector is really not a vector quantity since
it only describes lime averaged light intensities that
have only magnitude and no direction; however, in
keeping with historical convention the term pector
will be used in this paper. The Stokes vector is a Ixd
colurmn matrix where the matrix elements, Stokes
parameters, describe the intensily and polarization
state of a light beam. Although Stokes used A, B, C,
D for his parameters, Walker (5) adopted I, Q, U, V,
and Perrin (/) and Jones (7} adopted [, M, C, 5. There
are other notations as well, I, M, C, S notation is used
here.

g =

I'= «<I= = total intensity

M =« [ - Ly = = the difference in intensities between
horizontal and vertical linearly polarized light

C = = Iys - [y5 = = the difference in intensities
between linearly polarized light components oriented
at + 45 and - 45"

b=« ln:p - I, = = the difference in intensities
between right circularly polarized light and left circu-
larly polarized light

The "< >" represents a time averaged intensity, where
the time interval is sufficiently long to make a practi-
cal measurement. None of the parameters M, C, or
S can be larger than the first one, I That is, all other
parameters, P, must lie in the range -1 £ P £+1, and if
a beam of light is completely polarized, then
(MP+C245%1/2 = . One can speak of the degree of
polarization, D=(M2+C2452)1/2/1, if (ME+C2+82)1/2
<I. Mote that the equation (M2+C24+52)1/2=] js the
equation of a sphere of radius |, and that M, C, and 5
are the coordinates of a point on that sphere and rep-
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resent a unique polarization state that correlates to
the Poincaré sphere.

For additional information on the Stokes vector,
readers are directed to two authors: Shurcliff (8),
who discusses that the four Stokes parameters can be
operationally defined by a set of four filters interact-
ing with a light beam and would, therefore, follow
historical development; and Collett (9) for the
derivation of the Stokes parameters from electromag-
netic theory.

Below are examples of normalized Stokes vectors
for the more familiar polarization types and forms.

Linearly polarized light, circularly polarized
light, and elliptically polarized light represent differ-
ent polarization types. All linearly polarized light
beams, for which the vibration direction (azimuthal
or orientation angle, 8) is different, are of the same
type but of different form. Note that for linearly
polarized light, the Stokes' parameters M and S will
vary as a linear polarizer is rotated by 8 degrees
about its transmission axis. These rotations are speci-
fied by sine and cosine functions in the generalized
Stokes vector for linearly polarized light:

(1 cos 20 sin 26 0).

Right and left circularly polarized light are of

opposite forms. Note that the chirality (helicity or

0
0
0 | =Extinction
0
1
0 T - .
3 = Unpolarized light of unit intensity
0
1
1
0 = Horizontal linearly polarized light
0
1
-1
) = Vertical linearly polarized light
0
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handedness) of these two forms are mirror images of
each other. Furthermore, the current convention for
the representation of right circularly polarized light
corresponds to the left circularly polarized light rep-
resentation found in older references. Current con-
vention for the representation of right circularly
polarized light is for the propagation direction of the
light away from the source be represented by the
thumb of the right hand and, as the extended thumb is
moved towards the viewer, the curled finger tips
pointing toward the palm trace a right handed helix.
In older references, Shurcliff (8) and others, right cir-
cularly polarized light is represented by the thumb of
the right hand directed toward the light source.

THE POINCARE SPHERE: PART 1

Looking upwards on a clear night man sees pin-
points of light on a dome of black fabric. When early
Greek astronomers placed these points onto a "crys-
talline sphere”, the celestial sphere, they could note
the movements of these points around themselves;
they then could demonstrate to other astronomers
what they observed. Unfortunately, models of large
celestial spheres were too unwieldly to transport
from place to place. Hipparchus, a second century

1
1]
1 = +45° linearly polarized light
0
1
1 = -45° linearly polarized light
0
1
0
ol~ Right circularly polarized light
1
1
0 . -
0 = Left circularly polarized light
=1
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BCE Greek astronomer, found an answer to this
problem; he assigned what we now know as definite
latitude and longitude coordinates to each point on
the sphere and then used a stercographic projection
technique. With these tools, the points, stars on the
celestial sphere, could now be mathematically pro-
jected onto a flat surface, a map, which could be easi-
ly rolled up and transported from place to place.

Although seemingly lost for centuries, these pro-
jection techniques were rediscovered and other pro-
jection techniques invented during the European
Renaissance when classical literature of ancient Rome
and Greece and exploration of the Earth became fash-
ionable.

In 1892, Henri Poincaré published a work based
on similar mapping projection techniques. The coor-
dinates of cach point of the polarization ellipsoid,
derived from classical electrodynamics, were
mapped onto a flat surface, the complex plane. Then
reversing the technique, Poincaré proceeded to map
-these points onto a sphere, the Poincaré Sphere.
(Some readers may note that the intermediate com-
plex mapping step could be topologically avoided.
However, it was not until 1894 that Poincaré invent-
ed algebraic topology!)

With the Poincaré sphere, all points that lie on
the equator represent linear polarization states, and
all of these states have an ellipticity of 0. The eastern
most point on the equator, by convention, represents
horizontal linearly polarized light given by the
Stokes vector, (1 1 0 0). At its antipode, which is
located 180° opposite therefrom, vertical linear polar-
ized light is represented by the (1 -1 0 0) Stokes vec-
tor.

As the azimuthal angle, 6, (orientation angle) of a
polarizer is rotated, there is a concomitant rotation
about the polar axis of the sphere. The difference in
the minimum number of degrees of rotation of a
polarizer between a horizontal and vertical polariza-
tion state is 90°. The complete rotation of a linear
polarizer from horizontal to vertical to its initial hori-
zontal orientation involves 360°. Hence, the necessily
of using 26 in the generalized Slokes vector for lin-
early polarized light. Therefore, to find the point
located on the equator of the Poincaré sphere of a lin-
ear polarizer oriented at 45° with respect to a hori-
zontal linear polarizer, one must take 26, that is mul-
tiply 2 x 45°, and rotate the sphere about its polar axis
by 90° away from the horizontal linear polarization
state in an anti-clockwise manner. This results in
+45° linearly polarized light. A further rotation in
the same direction of the polarizer by 45°, that now is
180° away from the horizontal linear polarization
state, results in vertical linearly polarized light.
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The North Pole of the Poincaré sphere represents
left circularly polarized light and the South Pole,
right circularly polarized light. This brings us back
to types of polarized light.

If one considers a circle with its center located at
the origin of a two-dimensional Cartesian coordinate
system, the radii along the x and y axes are equiva-
lent. As the ratio of x and y coordinates changes, the
ellipticity, b/a, changes; that is, the circle is trans-
formed into an ellipse, and finally into a line. When
the line results, we have linearly polarized light;
when the radii are cqual, circularly polarized light; in
between, elliptically polarized light. If b=1 and a=0,
there is vertical linearly polarized light, etc. (Figure
1).

Ellipticity changes are represented by movement
either upwards or downwards from the equator on
the Poincaré sphere where the ellipticity is zero.
Therefore, great circles parallel to the equator of the
Poincaré sphere represent constant ellipticity, lines of
latitude. Types of polarized light are represented by
great circles of constant latitude on the sphere and
have the same ellipticity.

Longitudinal lines on the Poincaré sphere are
meridians of constant azimuth. As one proceeds
north or south of the equator along a given line of
longitude , that is, at a given azimuth, phase differ-
ence is introduced, which ranges from 0° at the equa-

|
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Ellipicity =b/a=tan | w|
0 = Azimuthal Angle -90°< 8 < 90°

Poincaré
-180° <26 <180°
90° €2 <£90°

Figure 1.
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Experiment 2: Consider a beam of unpolarized light
interacting first with a linear polarizer that has its
azimuthal angle at 6=0° (horizontal orientation) fol-
lowed by an interaction with a linear polarizer that
has its azimuthal angle at 8=90° (vertical orientation),
that is, unpolarized light interacting with crossed
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polars. The Mueller matrix, M(hp) is for a horizontal
linear polarizer and M(vp) is for a vertical linear
polarizer.

In the last calculation the two 4 x 4 matrices,
M(hp) and M(vp), were first left multiplied to give a
new matrix, the null matrix, which then operated on
the Stokes vector for unpolarized light. Such short-
cuts are useful when similar combinations of optical
elements in a given optical train are employed. The
Stokes vector that results is for extinction.

Experiment 3: Consider unpolarized light interacting
with three linear polarizers such that the first, sec-
ond, and third polarizers have their respective
azimuthal angles oriented at 6=0°, 6=+45°, and 6=90°
respectively. This represents crossed polars with a
third linear polarizer sandwiched in between, but ori-
ented at 45°. The Mueller matrix, M(hp), is for a hori-
zontal linear polarizer, M(45p) is for a linear polariz-
er oriented at 45°, and M(vp) is the Mueller matrix
for a vertical linear polarizer.

We see that the introduction of a third linear
polarizer at an angle of 45° allows light to be trans-
mitted by two crossed polarizers; it is acting as a
compensator. Similar phenomena are observed
when optically anisotropic samples are introduced

1
0
M(vp) x M(45p) x M(hp) x 8
i}
11 00]]t
M(vp) x M(45p) 1/21100 :
= X X
o p ooooll]o
0o oo0of|o
1 010}t
00001
=Ml(vp)x 1/4
1 01 0|0
cooolf|o
1 -1 00|t i
T e | N
- 0 0o off1] 0
0 o o0o0|lo 0
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between crossed polars. The results are generally
more complicated and the factor that precedes the
final Stokes vector is different. Depending on the
complexity of the interaction, especially where a
knowledge of phase is of importance, the entire cal-
culation by the Mueller matrix method is of little or
no use, and the Jones calculus must be employed.

Experiment 4: Find the result of unpolarized light
entering a linear polarizer oriented at 8=45° with
respect to a plane mirror surface such that the reflect-
ed beam enters a second linear polarizer of the oppo-
site vibration direction and orientation; that is, the
polarizers are crossed and splayed against the mirror
surface. Here M(m) is the matrix for a perfectly
reflecting plane mirror surface, M(45p) is the matrix
for a linear polarizer with the vibration direction ori-
ented at an angle of +45° with respect to the mirror’s
surface, and M(-45p) is the matrix for a linear polariz-

1

M(-45p) x M(m) x M(45p) x g

0

1 010 1

M(-45p) x M(m) x 1/2 o000 0
1 0t 0O 0

6 00GO 0

1 0 0 O 1

=M(-45p) x 1/2 g 109 i
0 0 -1 1

0 0 0 -1 0

i1 0 -10 1

il 0 0 0 O 0

10 1 0 -1

0 0 0 O 0

2 142 1

0
=1/4 2 “112 =1/2 -
0 1] 1]
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er with the vibration direction oriented at an angle of
-45° with respect to the mirror’s surface (Figure 3).

Note that the plane mirror changed the +45°
vibration direction into a -45° vibration direction.
This is equivalent to rotating one of the polarizers by
90°. Therefore, perfectly flat reflecting, non-absorb-
ing surfaces can introduce a phase change of 180°.
The chirality of left and right is interchanged; that is
+y=+y upon reflection; however, +x becomes -x upon
reflection.

Experiment 5: Find the result of unpolarized light
entering a linear polarizer oriented at 6=45° with
respect to a plane mirror surface such that the reflect-
ed beam enters a second linear polarizer of the same
vibration direction and orientation; that is, the polar-
izers are uncrossed and splayed against the mirror
surface. Here M(m) is the matrix for a perfectly
reflecting plane mirror surface, and M(45p) used
twice is the matrix for a linear polarizer oriented such
that the vibration direction makes an angle of 45°
with respect to the mirror’s surface.

Note that the only difference between
Experiment 4 and Experiment 5 is the use of a differ-
ent "analyzer" orientation; therefore, a different
matrix is required for the same material.

1
M(45p) x M(m) x M{45p) x 0
0
0
it 010 1
0 00O 0
= M(45p) x M(m) x 1/2
1 010 0]
0 00O 0
1t 0 0 0O 1
0 1 0 0
=M@5p) x 1/2
00 -t 1
00 0 - 0
1 010 1 0
0 00O 1] 0
=1/4 =
{1 010 = 0
0 00GO o] 0

MICROSCOPE(2001)49






100 0||t 00 O
000 -t||looo -t
“lo ot D01 0
010 0100
1 0 0 0
0 -1 0 0
“lo 0o 1 o
00 0 -

this light beam, a linear horizontal polarizer, pro-
duces extinction. This can be readily seen with the
Poincaré sphere if, as in the case described in the pre-
vious section on the Poincaré sphere, the arc that con-
nects P to H is now rotated about the axis that con-
nects the center of the sphere, O, to P by 180°.

Experiment 8: Make a combination of a linear polar-
izer with a linear retarder that has 8=+45° and 3=90°
(quarter wave plate), and place it onto a plane mirror
such that the retarder conlacts the mirror surface. The
unpolarized beam of light enters the horizontal linear
polarizer, interacts with the A/4 plate with 8= +45°
and 6=90°, reflects from the mirror, again inleracts
with the A/4 plate, and interacts with the horizontal
linear polarizer. Matrix M(hp) is used twice for the
horizontal linear polarizer, and M(m) is the matrix
for a plane mirror. M(45, A/4) is the matrix for a A/4
plate with 8=+45° and 3=90°. M(-45, A/4) is the
matrix for a A/4 plate with 6=-45° and 8=90°. (Even
though the same A/4 plate is used in the interactions,
the reflected light beam now “sees” the opposite ori-
entation of the fast vibration direction of the
relarder). The Mueller matrix calculation that
describes the interaction of this system with unpolar-

ized lightis:  M(hp) x M(-45, A/4) x M(m) x
1
0
M52/ x Mt x |
0
=1/2 x M(hp) x
1 0 0 0O 1
M(-45, 1 /4) x 0100 Y
00 -10 1]
00 0 - 1
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i 0 0O 1
=1/2 x M(hp) x DT e
0 0 10 0
0 -1 0O -1
1100 1 0
1100 -1 0
=1/4 =
0 00O 0 0
0 00O 0 0

In the actual experiment total extinction may not
be observed because the light used for this experi-
ment is, most likely, not monochromatic, and the
polarizer and retarder are not homogencous.

Most commercial circular polarizers are made by
laminating a A/4 plate onto a linear polarizer. For
these polarizers, one can determine which side of the
circular polarizer is the linear polarizer and which
side is the A/4 plate by three simple means.

(1) From the results of this last experiment, a cir-
cular polarizer when placed against a plane mirror
will exhibit extinction for that side of the polarizer,
which is the A/4 plate that comes in contact with the
mirror.

(2) Using an additional linear polarizer, the side
of the circular polarizer which exhibits extinction for
certain orientations of the linear polarizer must be
the linear polarizer side of the circular polarizer lami-
nate.

(3) If a plane mirror and/or linear polarizer are
not available, cut off a small fragment of the circular
polarizer (this assumes an inexpensive plastic lami-
nate) and use this fragment in one of the eight differ-
ent possible orientations/ configurations with respect
to the circular polarizer. There will be one extinction
position. This will correspond to the mutually touch-
ing sides of the fragment and circular polarizer being
the linear polarizers.

Experiment 9: Make a combination of a linear hori-
zontal polarizer sandwiched between two quarter
wave plates with are oriented orthogonal to each
other but have their transmission axes oriented at 45°
with respect to the vibration direction of the linear
polarizer and allow unpolarized light to interact
therewith. M(45, A/4) represents the matrix for a lin-
ear retarder with 8=45° and & =90°, M(hp) is the
matrix for a horizontal linear polarizer, and M(-45,
A/4) represents the matrix for a linear retarder with
0=-45° and 8 =90°. Two cases arise:
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This combination of two linear retarders and
one linear polarizer is an ambidextrous polarizer.
That is, if unpolarized light enters from one direction,
circularly polarized light results with a particular chi-
rality; and if unpolarized light enters from the oppo-
site direction, circularly polarized light of the oppo-
site chirality results.

These results may be interpreted by means of the
Poincaré sphere. If a linear retarder with a retar-
dance 8=90° is placed at the +45° position as
described previously for the Poincaré sphere, then
right circularly polarized light results for an anti-
clockwise rotation of the sphere. If, however, the
same retarder is oriented with its fast vibration direc-
tion opposite, the starting point on the sphere is now
at -45°, the antipode; then left circularly polarized
light results for an anti-clockwise rotation of the
sphere. This is consistant with Poincaré’s convention
of left and right circularly polarized light. Also, note
that the North and South Poles of the sphere, which
represent left and right circularly polarized light
respectively, are related by a 180° rotation of the
sphere that corresponds to a phase difference of the
same amount.

Also notable, if the same retarder were oriented
at any azimuthal angle, 8, other than 0°, 90°, or + 45°,
then elliptically polarized light results.

Experiment 10: Place a full wave plate between paral-
Tel linear polarizers such that the fast vibration direc-
tion is parallel to the vibration direction of the two
linear polarizers. Depending on the thickness and
material used in the manufacture of this retarder, a
slight green tint will be noticeable. Repeat this with
two full wave plates with their fast vibration direc-
tions parallel to the uncrossed linear polarizer's
vibration directions. The depth of the green tint
increases. This occurs because one full order of retar-
dation has been introduced by the addition of the
second full wave plate. Compare your results with a
Michel-Lévy diagram. This final experimental result
may also be demonstrated by placing a full wave
plate against a plane mirror on top of which is placed
a linear polarizer, which has the same vibration
direction as the fast direction of the full wave plate.

Although the Mueller calculus will predict that
polarized light is extant, it cannot explain the inter-
ference colors caused by phase diffcrences; for an
understanding of these phenomena one must defer to
the Jones calculus.
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rotated, there is a concomitant rotation of the
Poincaré sphere about its polar axis. This rotation
brings the sample to a full extinction or full bright-
ness condition that corresponds to the vertical or hor-
izontal linear polarizer position respectively.

CONCLUSION

The interaction of light with matter is a complex
phenomenon. Polarized light offers clues as to what
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is taking place. In some instances the Mueller calcu-
lus is useful to describe the observed phenomena and
makes correct predictions. In other situations, such
as Experiment 10 and in a paper on the Herzog effect
(15), the Jones calculus is better suited. Although this
paper does not address the Jones calculus explicity,
the reader should be apprised of the differences in
applicability between the Jones (JC) and Mueller cal-
culi (MC).

Appendix: Mueller Matrices

Horizontal Linear Polarizer, 8 = 0°

Vertical Linear Polarizer, 8 =90°

1 100 1 -1 00
110 -1 1 00
M(hp) =1/2 000 0 M(vp) =1/2 0 0 0 0
0 0 6O 0O 0 00

Linear Polarizer, 8=45°

M(45p) = 1/2

S = O -
[ I e o I )
O = O
o O O O

Linear Retarder, 6 = 45°, 8 = 90°

100 0
00 0 -1
M(45, A/4) = 001 0
01 0 0

1 0 -1 0
0 0 00
M(-45p) = 1/2 10 1 0
0 0 0 O

Linear Polarizer, 6=45°

Linear Retarder, 8 = 45°, & = 90°

1 0 00
0 0 01
M(-45,A/4) = 0 0 10
0 -1 00

Mirror (linear retarder), 6 =0 or +90°, & = 180°

1 0 0 O

01 0 O
M(m) =

00 -1 0

00 0 -1

8 =azimuthal angle of fast transmission axis

& = retardance
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Mueller Calculas vs. Jones Calculas

1. MC can handle depolarization problems whereas
JC cannot. Unpolarized or partially polarized light
cannot be specified by JC matrices since all matrix
elements must be orthogonal.

2. MC is phenomenological and does not depend on
the validity of electromagnetic theory whereas JC is
derived therefrom (however, see references 12, 13).

3. JC retains phase information, if non-normalized
matrices are used, whereas MC cannot handle phase.

4. JCis well-suited to problems dealing with combin-
ing coherent beams whereas MC may be able to do so
with great difficulty.

5. JC is predicated on amplitude transmittance
whereas MC is predicated on intensity transmittance.

6. MC employs the Stokes vector with the first term
specifying intensity whereas JC vectors do not do
this; therefore, the sum of the squares of the matrix
elements must be taken to obtain this information.

7. JCis well suited to determine the explicit ouicome
of a series or train of similar optical devices.

8. JC matrices contain 4 elements comprising 8 lin-
early independent constants for polarizers and
retarders; that is, there is no redundant information.
The MC matrices contain 16 elements and only 7 are
independent. The others are redundant.

9. Many of the JC matrix elements are complex
whereas all of the MC matrix elements are real.

10. Both calculi have problems handling non-linear
optical devices.

MATERIALS

Linear polarizers, full wave and A/4 plates may be
purchased from the following sources:

American Polarizers, Inc., 141 South Seventh Street,
Reading, PA 19602, PHONEs: (610) 373-5177 or (800)
377-4100; FAX: (610) 373-2229; or website:< www.api-
optics.com >

Edmund Industrial Optics, Sales Department W011,
101 East Gloucester Pike, Barrington, NJ, 08007-1380,

108

PHONES: (800) 363-1992 or (856) 573-6250; FAX:
(856) 573-6295; E-Mail: < www.sales@edmundop-
tics.com >

McCrone Microscopes and Accessories, 850
Pasquinelli Drive, Westmont, IT., PHONES: (630) 887-
7100, or (800) 622-8122 FAX: (630) 887-7764; or
website: < www.mccrone.com >

The model of the Poincaré sphere with the 3-D
Cartesian coordinate system contained inside,
Figures 2 and 4, is constructed from a small animal
plastic “exercise ball”, a drilled plastic die, and stiff
plastic rods or tubes.
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