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EDITORIAL
After 12 years of trying to serve SMSI
successfully, I have, along with the support of
many SMSI members, elevated the society to a
new level where we now have teaching affiliations
with two major government laboratories, Argonne
National Laboratory and Fermi National
Accelerator Laboratory; and we have good
relations with Aurora University, which can grant
graduate credit to teachers enrolled in our classes.
Now we want to bring the Young People’s Courses
back to McRI as envisioned by Leon Urbain and
Walter C. McCrone. This must continue into the
future to inspire young minds to enquire into
nature and to aspire to careers in science.

We have also entered the electronic age where
members can get information about the SMSI
expeditiously on-line and thus save monies which
can be invested in course materials taught to
elementary and high school students and teachers
alike.

After this time span I want the society to flourish
with new ideas provided by a younger person
capable of leadership and scientific prowess in
microscoscopy, optics, chemistry, physics, and
mathematics. The integration of all these fields
has been done before and must continue into the
future for SMSI to advance the study of science.

Bill C. Mikuska
President, State Microscopical Society of Illinois

All opinions expressed by contributing authors of
µ · Notes are the responsibility of the author(s) and
do not necessarily reflect the opinion of the State
Microscopical Society of Illinois or that of the
editor.
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resent a unique polarization state that correlates to
the Poincare sphere.

For additional information on the Stokes vector,
readers are directed to two authors: Shurcliff (8),
who discusses that the four Stokes parameters can be
operationally defined by a set of four filters interact-
ing with a light beam and would, therefore, follow
historical development; and Collett (9) for the
derivation of the Stokes parameters from electromag-
netic theory.

Below are examples of normalized Stokes vectors
for the more familiar polarization types and forms.

Linearly polarized light, circularly polarized
light, and elliptically polarized light represent differ-
ent polarization types. All linearly polarized light
beams, for which the vibration direction (azimuthal
or orientation angle, 0) is different, are of the same
type but of different form. Note that for linearly
polarized light, the Stokes' parameters M and S will
vary as a linear polarizer is rotated by 0 degrees
about its transmission axis. These rotations are speci-
fied by sine and cosine functions in the generalized
Stokes vector for linearly polarized light:

(1 cos 20 sin 20 0).
Right and left circularly polarized light are of

opposite forms. Note that the chirality (helicity or

= Extinction

= Unpolarized light of unit intensity

= Horizontal linearly polarized light

= Vertical linearly polarized light

handedness) of these two forms are mirror images of
each other. Furthermore, the current convention for
the representation of right circularly polarized light
corresponds to the left circularly polarized light rep-
resentation found in older references. Current con-
vention for the representation of right circularly
polarized light is for the propagation direction of the
light away from the source be represented by the
thumb of the right hand and, as the extended thumb is
moved towards the viewer, the curled finger tips
pointing toward the palm trace a right handed helix.
In older references, Shurcliff (8) and others, right cir-
cularly polarized light is represented by the thumb of
the right hand directed toward the light source.

THE POINCARE SPHERE: PART 1

Looking upwards on a clear night man sees pin-
points of light on a dome of black fabric. When early
Greek astronomers placed these points onto a "crys-
talline sphere", the celestial sphere, they could note
the movements of these points around themselves;
they then could demonstrate to other astronomers
what they observed. Unfortunately, models of large
celestial spheres were too unwieldly to transport
from place to place. Hipparchus, a second century

= +45° linearly polarized light

= -45° linearly polarized light

= Right circularly polarized light

= Left circularly polarized light
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BCE Greek astronomer, found an answer to this
problem; he assigned what we now know as definite
latitude and longitude coordinates to each point on
the sphere and then used a stereographic projection
technique. With these tools, the points, stars on the
celestial sphere, could now be mathematically pro-
jected onto a flat surface, a map, which could be easi-
ly rolled up and transported from place to place.

Although seemingly lost for centuries, these pro-
jection techniques were rediscovered and other pro-
jection techniques invented during the European
Renaissance when classical literature of ancient Rome
and Greece and exploration of the Earth became fash-
ionable.

In 1892, Henri Poincare published a work based
on similar mapping projection techniques. The coor-
dinates of each point of the polarization ellipsoid,
derived from classical electrodynamics, were
mapped onto a flat surface, the complex plane. Then
reversing the technique, Poincare proceeded to map
these points onto a sphere, the Poincare Sphere.
(Some readers may note that the intermediate com-
plex mapping step could be topologically avoided.
However, it was not until 1894 that Poincare invent-
ed algebraic topology!)

With the Poincare sphere, all points that lie on
the equator represent linear polarization states, and
all of these states have an ellipticity of 0. The eastern
most point on the equator, by convention, represents
horizontal linearly polarized light given by the
Stokes vector, (1 1 0 0). At its antipode, which is
located 180° opposite therefrom, vertical linear polar-
ized light is represented by the (1 -1 0 0) Stokes vec-
tor.

As the azimuthal angle, 0, (orientation angle) of a
polarizer is rotated, there is a concomitant rotation
about the polar axis of the sphere. The difference in
the minimum number of degrees of rotation of a
polarizer between a horizontal and vertical polariza-
tion state is 90°. The complete rotation of a linear
polarizer from horizontal to vertical to its initial hori-
zontal orientation involves 360°. Hence, the necessity
of using 20 in the generalized Stokes vector for lin-
early polarized light. Therefore, to find the point
located on the equator of the Poincare sphere of a lin-
ear polarizer oriented at 45° with respect to a hori-
zontal linear polarizer, one must take 20, that is mul-
tiply 2 x 45°, and rotate the sphere about its polar axis
by 90° away from the horizontal linear polarization
state in an anti-clockwise manner. This results in
+45° linearly polarized light. A further rotation in
the same direction of the polarizer by 45°, that now is
180° away from the horizontal linear polarization
state, results in vertical linearly polarized light.

The North Pole of the Poincare sphere represents
left circularly polarized light and the South Pole,
right circularly polarized light. This brings us back
to types of polarized light.

If one considers a circle with its center located at
the origin of a two-dimensional Cartesian coordinate
system, the radii along the x and y axes are equiva-
lent. As the ratio of x and y coordinates changes, the
ellipticity, b/ a, changes; that is, the circle is trans-
formed into an ellipse, and finally into a line. When
the line results, we have linearly polarized light;
when the radii are equal, circularly polarized light; in
between, elliptically polarized light. If b=1 and a=0,
there is vertical linearly polarized light, etc. (Figure
1).

Ellipticity changes are represented by movement
either upwards or downwards from the equator on
the Poincare sphere where the ellipticity is zero.
Therefore, great circles parallel to the equator of the
Poincare sphere represent constant ellipticity, lines of
latitude. Types of polarized light are represented by
great circles of constant latitude on the sphere and
have the same ellipticity.

Longitudinal lines on the Poincare sphere are

meridians of constant azimuth. As one proceeds
north or south of the equator along a given line of
longitude , that is, at a given azimuth, phase differ-
ence is introduced, which ranges from 0° at the equa-

Ellipicity = b / a = tan I n) I

0 = Azimuthal Angle 	 -90° 0 90°

Poincare

-180° <_20 180°

-90° 5 2 o)	 90°

Figure 1.
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tor to 90° at a given pole. In addition, a given point
on the Poincare sphere and its antipode will share a
Phase difference of 180°; and the coordinates, M, C,
and S. of these two diametrically opposing points are
interrelated by an inversion center of symmetry for
the same light intensity.

Lines of different longitude represent different
azimuthal angles and lines of different latitude repre-
sent different ellipticities.

Retarders, also known as phase shifters, are
essentially materials that will change the ellipticity of
a linear polarization state as the orientation angle of
their fast or slow vibration direction is varied with
respect to a given polarization state. The amount of
phase shift introduced is determined by the thickness
and birefringence of the retarder and by the wave-
length of the light used. All anisotropic substances
are variable phase shifters.

Consider the following example in terms of the
Poincaré sphere. A sample is orientated at +45° with
respect to an incident beam of horizontal linearly
polarized light such that for the wavelength of light
being used and the sample's thickness and birefrin-
gence, a phase shift of 90° results. Point H in Figure 2
is the location of the point on the equator of the
sphere that represents horizontal linearly polarized
light; and point P, also located on the equator at
2 x 45°, is the oriented 90° phase shifter. An arc con-
nects P to H; and if that arc is rotated about an axis
that connects the center of the sphere, 0, to P, in an
anti-clockwise manner (a clockwise sphere rotation)
by 90° (the amount of phase shift), point I-1 is trans-
formed into point R, which lies at the North Pole of
the sphere. This point on the sphere represents left
circularly polarized light (Poincare's convention)
with a zero azimuth and an ellipticity of 1. The
microscopist recognizes the sample as a 7i.14 plate
oriented at 45° that transforms linearly polarized
light into circularly polarized light (Figure 2).

Mueller Calculus

Hans Mueller of the Massachusetts Institute of
Technology empirically discovered that 4 x 4 matri-
ces, in which all matrix elements are real quantities,
could be used to describe the properties of polarizers
and retarders (l0, 11). Furthermore, when a Stokes
vector, representing some polarization state of a light
beam, is left multiplied by such a matrix, the resul-
tant 1 x 4 column matrix is the Stokes vector, which
describes the new polarization state of the light
beam. Shurcliff (8) discusses the basis for the devel-
opment of the Mueller calculus and Parke (12, 13)

Figure 2.

demonstrates that the Mueller and the Jones calculi
are interrelated, thereby showing that the Mueller
calculus also has a foundation in electromagnetic the-
ory. The Jones calculus will be very briefly addressed
later.

Tables of Mueller and Jones matrices may be
found in many texts on optics and polarized light.
The seven Mueller matrices used in this article are
given in the appendix on page 107.

Experiments and Matrix Calculations

Performing the following experiments and inte-
grating them with the corresponding Mueller matrix
calculations and Poincaré Sphere manipulations will
enable the optical researcher/ microscopist to grasp
better the various techniques and machinations
involved in the use of polarizers and compensators .

Experiment 1: Consider the interaction of unpolar-
ized light with a single linear polarizer that has its
azimuth (orientation angle) at 0=0°. The Mueller
matrix, M(hp), is for a horizontal linear polarizer
which then left multiplies the Stokes vector for unpo-
larized light in the manner of linear algebra. The
resultant Stokes vector describes horizontal linearly
polarized light that has its intensity reduced be a fac-
tor of 1/2.

I 100 	 MICROSCOPE(2001}49



0
M(hp) 0

0

1 1 0 0

= 1/2 1 1 0 0 0 = 1/2
0 0 0 0 0 0

0 0 0 0 0 0

Experimen 2: Consider a beam of unpolar zed light
interacting first with a linear polarizer that has its
azimuthal angle at 0=0' (horizontal orientation) fol-
lowed by an interaction with a linear polarizer that
has its azimuthal angle at 0=90° (vertical orientation),
that is, unpolarized light interacting with crossed

M(vp) x M(hp) x 
0

0

0

BILL C M1KUSKA

polars. The Mueller matrix, M(hp) is for a horizontal
linear polarizer and M(vp) is for a vertical linear
polarizer.

In the last calculation the two 4 x 4 matrices,
M(hp) and M(vp), were first left multiplied to give a
new matrix, the null matrix, which then operated on
the Stokes vector for unpolarized light. Such short-
cuts are useful when similar combinations of optical
elements in a given optical train are employed. The
Stokes vector that results is for extinction.

Experiment 3: Consider unpolarized light interacting
with three linear polarizers such that the first, sec-
ond, and third polarizers have their respective
azimuthal angles oriented at 0=0', 0=1-45°, and 0=90°
respectively. This represents crossed polars with a
third linear polarizer sandwiched in between, but ori-
ented at 45°. The Mueller matrix, M(hp), is for a hori-
zontal linear polarizer, M(45p) is for a Linear polariz-
er oriented at 45°, and M(vp) is the Mueller matrix
for a vertical linear polarizer.

We see that the introduction of a third linear
polarizer at an angle of 45' allows light to be trans-
mitted by two crossed polarizers; it is acting as a
compensator. Similar phenomena are observed
when optically anisotropic samples are introduced

= M(vp) x 1/2

1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

1

0

0

0

M(vp) x M(45p) x M(hp) x
0

0

1 1 0 0

	

1 —1 0 0	 1 1 0 0
	

0

	= 1/4 
—1 1 0 0
	 = M(vp) x M(45p) x 1/2 

0 0 0 0
	

0

	

0 0 0 0
	

0	 0 0 0 0
	

0

	

0 0 0 0
	

0

0 0 0 0

0 0 0 0
= 1/4 

0 0 0 0

0 0 0 0

M(vp) x 1/4

1 —1 0 0

—1 1 0 0

0 0 0 0

0 0 0 0

1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

1

0

1
	 = 1/3

0
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0
	

0

0
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0	 = 1/3

0
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-1

0

0
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between crossed polars. The results are generally
more complicated and the factor that precedes the
final Stokes vector is different. Depending on the
complexity of the interaction, especially where a
knowledge of phase is of importance, the entire cal-
culation by the Mueller matrix method is of little or
no use, and the Jones calculus must be employed.

Experiment 4: Find the result of unpolarized light
entering a linear polarizer oriented at 0=45° with
respect to a plane mirror surface such that the reflect-
ed beam enters a second linear polarizer of the oppo-
site vibration direction and orientation; that is, the
polarizers are crossed and splayed against the mirror
surface. Here M(m) is the matrix for a perfectly
reflecting plane mirror surface, M(45p) is the matrix
for a linear polarizer with the vibration direction ori-
ented at an angle of +45° with respect to the mirror's
surface, and M(-45p) is the matrix for a linear polariz-

1

0
M(-45p) x M(m) x M(45p) x

0

0

1	 0	 1	 0 1

0	 0	 0	 0 0
M(-45p) x M(m) x 1/2

1	 0	 1	 0 0

0	 0	 0	 0 0

1	 0	 0	 0

0	 1	 0	 0 0
= M(-45p) x 1/2

0	 0	 — 1	 0

0	 0	 0	 —1 0

1	 0	 — 1	 0

0	 0	 0	 0 0
= 1/4

— 1	 0	 1	 0 -1

0	 0	 0	 0 0

2 112

0 0 0
= 1/4

—2 —1/2
= 1/2

-1

0 0 0

er with the vibration direction oriented at an angle of
-45° with respect to the mirror's surface (Figure 3).

Note that the plane mirror changed the +45°
vibration direction into a -45° vibration direction.
This is equivalent to rotating one of the polarizers by
90°. Therefore, perfectly flat reflecting, non-absorb-
ing surfaces can introduce a phase change of 180°.
The chirality of left and right is interchanged; that is
+y=+y upon reflection; however, +x becomes -x upon
reflection.

Experiment 5: Find the result of unpolarized light
entering a linear polarizer oriented at 0=45° with
respect to a plane mirror surface such that the reflect-
ed beam enters a second linear polarizer of the same
vibration direction and orientation; that is, the polar-
izers are uncrossed and splayed against the mirror
surface. Here M(m) is the matrix for a perfectly
reflecting plane mirror surface, and M(45p) used
twice is the matrix for a linear polarizer oriented such
that the vibration direction makes an angle of 45°
with respect to the mirror's surface.

Note that the only difference between
Experiment 4 and Experiment 5 is the use of a differ-
ent "analyzer" orientation; therefore, a different
matrix is required for the same material.

0
M(45p) x M(m) x M(45p) x

0

0

1 0	 1	 0

0 0	 0	 0	 0
= M(45p) x M(m) x 1/2

1 0	 1	 0	 0

0 0	 0	 0	 0

1 0	 0	 0

0 1	 0	 0	 0
= M(45p) x 1/2

0 0	 —1	 0

0 0	 0	 —1	 0

1	 0	 1 0 1 0

0	 0	 0 0 0 0
= 1/4

1	 0	 1 0 -1 0

0	 0	 0 0 0 0
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Figure 3.

Experiment 6: Find the result of unpolarized light
entering a linear horizontal polarizer followed by a
linear retarder oriented at OAS' with a phase shift of
5=90'; that is, the retarder is a 214 plate. Refer to the
earlier discussion of the Poincare sphere. Remember,
the result of using the sphere in this instance was the
conversion of unpolarized light into right circularly
polarized light. M(hp) is again a horizontal linear
polarizer matrix and M(45, 2/4) is the matrix of a lin-
ear retarder with 8-45° and a retardance 5=90°.

Although the Poincare sphere predicted right cir-
cularly polarized light, we see that the Mueller
matrix calculation tells us that the light intensity is
reduced by 1/2. This is, of course, the result of the
linear horizontal polarizer and the fact that we
assume a normalized unit intensity for the unpolar-
ized light beam.

 

0

1	 1	 0 0

1	 1	 0 0
= M(45,2/4) x 1/2

0	 0	 0 0 0

0	 0	 0 0 0

1	 0	 0	 0

0	 0	 0	 —1= 1/2 = 1/2
0	 0	 1	 0 0 0

0	 1	 0	 0 0

Experiment 7: Make a sandwich combination of a lin-
ear polarizer followed by two linear retarders, each
with 0=+45° and 5 =90°, 214 plates, in coincidence
(the fast arid slow vibration directions of both must
coincide), and then add a second linear polarizer,
parallel to the first polarizer, against the quarter
wave plate, which then interacts with unpolarized
light. The Mueller matrix is M(hp) for a horizontal
linear polarizer with 0=0°, and M(45, 2/4) is the

	

matrix for a 2/4 plate. 	 M(hp) x M(45,	 2/4) x

	

M(45,2/4) x M(hp)	
0

1 0 0 0

	= 1/2 x Maw) a 0 0 0 —1
	 0

	0 0 1 0
	

0

0 1 0 0

The result of M(45, 2/4) x M(hp) x (I 0 0 0) produces
right circularly polarized light reduced in intensity
by 1/2 given by the Stokes vector 1/2 (1 0 0 1). See
Experiment 6. To continue:

1 1	 0	 0
1 1	 0	 0 -1= 1/4
0 0	 q	 0 0

0 0	 0	 0 LI

0 0

0 0
= 1/4

0

0

Note that the inner product of M(45, 2/4) x M(95,
2/4) is the Mueller matrix for a linear retarder with
B=+45° and 5=180°, a 2/2 plate. Therefore, a 2/2
plate converts, in this instance, horizontal linearly
polarized light into vertical linearly polarized light,
which is why the last optical element interacting with
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1	 0 0 0 1 0 0 0

0	 0 0 – 1 0 0 0 –1

0	 0 1 0 0 0 1 0

0	 1 0 0 0 1 0 0

1 0 0 0
0 --I 0 0

0 0 1 0
0 0 0 —1

this light beam, a linear horizontal polarizer, pro-
duces extinction. This can be readily seen with the
Poincaré sphere if, as in the case described in the pre-
vious section on the Poincare sphere, the arc that con-
nects P to H is now rotated about the axis that con-
nects the center of the sphere, 0, to P by 180°.

Experiment 8: Make a combination of a linear polar-
izer with a linear retarder that has 0=+45° and 6=90°
(quarter wave plate), and place it onto a plane mirror
such that the retarder contacts the mirror surface. The
unpolarized beam of light enters the horizontal linear
polarizer, interacts with the 4/4 plate with 0= +45°
and 6=90°, reflects from the mirror, again interacts
with the 4/4 plate, and interacts with the horizontal
linear polarizer. Matrix M(hp) is used twice for the
horizontal linear polarizer, and M(m) is the matrix
for a plane mirror. M(45,4/4) is the matrix for a 1,/4
plate with 0=+45° and 6=90°. M(-45, 4/4) is the
matrix for a 4/4 plate with 0=-45° and 8=90°. (Even
though the same 4/4 plate is used in the interactions,
the reflected light beam now "sees" the opposite ori-
entation of the fast vibration direction of the
retarder). The Mueller matrix calculation that
describes the interaction of this system with unpolar-
ized light is:	 M(hp) x M(-45, X/4) x M(m) x

0
M(45,A/4) x M(hp) x

0
0

= 1/2 x M(hp) x

	0	 0	 0 1

0	 1	 0	 0 0
M(-45, /4) x

0	 0	 — 1 	 0 0
0	 0	 0	 —1 1

	

1 0 0 0	 1

	

0 0 0 1	 0

	

0 0 1 0	 0

	

0 —1 0 0	 —1

1 1 0 0	 1	 0

1 1 0 0	 –1	 0

0 0 0 0	 0	 0

0 0 0 0	 0	 0

In the actual experiment tota extinction may not
be observed because the light used for this experi-
ment is, most likely, not monochromatic, and the
polarizer and retarder are not homogeneous.

Most commercial circular polarizers are made by
laminating a k / 4 plate onto a linear polarizer. For
these polarizers, one can determine which side of the
circular polarizer is the linear polarizer and which
side is the 4/4 plate by three simple means.

(1) From the results of this last experiment, a cir-
cular polarizer when placed against a plane mirror
will exhibit extinction for that side of the polarizer,
which is the 4/4 plate that comes in contact with the
mirror.

(2) Using an additional linear polarizer, the side
of the circular polarizer which exhibits extinction for
certain orientations of the linear polarizer must be
the linear polarizer side of the circular polarizer lami-
nate.

(3) If a plane mirror and/or linear polarizer are
not available, cut off a small fragment of the circular
polarizer (this assumes an inexpensive plastic lami-
nate) and use this fragment in one of the eight differ-
ent possible orientations/configurations with respect
to the circular polarizer. There will be one extinction
position. This will correspond to the mutually touch-
ing sides of the fragment and circular polarizer being
the linear polarizers.

Experiment 9: Make a combination of a linear hori-
zontal polarizer sandwiched between two quarter
wave plates with are oriented orthogonal to each
other but have their transmission axes oriented at 45°
with respect to the vibration direction of the linear
polarizer and allow unpolarized light to interact
therewith. M(45, 4/4) represents the matrix for a lin-
ear retarder with 0=45° and 8 =90°, M(hp) is the
matrix for a horizontal linear polarizer, and M(-45,
4/4) represents the matrix for a linear retarder with
0=-45° and 8 =90°. Two cases arise:

=1/2 x M(hp) x

= 1/4
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M(-45, A/4) x M(hp) x M(45, X/4) x

0	 0	 0

1
0

0

0

I

0	 0	 0	 —1 0
= M(-45,1/4) x M(hp) x

0	 0	 1	 0 0
0	 1	 0	 0 0

1	 1	 0	 0
1	 1	 0	 0

= M(-45, X/4) x 1/2
0	 0	 0	 0 0

0	 0	 0	 0

1	 0	 0	 0
0	 0	 0	 1 0

= 1/2 = 1/2
0	 0	 1	 0 0 0
0	 —1	 0	 0 0 -1

and

This combination of two linear retarders and
one linear polarizer is an ambidextrous polarizer.
That is, if unpolarized light enters from one direction,
circularly polarized light results with a particular chi-
rality; and if unpolarized light enters from the oppo-
site direction, circularly polarized light of the oppo-
site chirality results.

These results may be interpreted by means of the
Poincaré sphere. If a linear retarder with a retar-
dance d=90° is placed at the +45" position as
described previously for the Poincaré sphere, then
right circularly polarized light results for an anti-
clockwise rotation of the sphere. If, however, the
same retarder is oriented with its fast vibration direc-
tion opposite, the starting point on the sphere is now
at -45°, the antipode; then left circularly polarized
light results for an anti-clockwise rotation of the
sphere. This is consistant with Poincaré's convention
of left and right circularly polarized light. Also, note
that the North and South Poles of the sphere, which
represent left and right circularly polarized light
respectively, are related by a 180° rotation of the
sphere that corresponds to a phase difference of the
same amount.

Also notable, if the same retarder were oriented
at any azimuthal angle, 0, other than 0°, 90°, or ± 45°,
then elliptically polarized light results.

M(45, X/4) x M(hp) x M(-45, X/4) x

1

0
0

0

= M(45, A/4) x M(hp) x

1 0 0 0

0 0 0 1

0 0 1 0
0 —1 0 0

1

0

0

0

= M(45,A/4) x 1/2

1 1 0 0

1 1 0 0
0 0 0 0

0 0 0 0

1
0
0

0

= 1/2

1 0 0 0

0 0 -1
0 0 1 0
0 1 0 0

1

0

0

= 1/2

1

0
0

1

Experiment 10: Place a full wave plate between paral-
lel linear polarizers such that the fast vibration direc-
tion is parallel to the vibration direction of the two
linear polarizers. Depending on the thickness and
material used in the manufacture of this retarder, a
slight green tint will be noticeable. Repeat this with
two full wave plates with their fast vibration direc-
tions parallel to the uncrossed linear polarizer's
vibration directions. The depth of the green tint
increases. This occurs because one full order of retar-
dation has been introduced by the addition of the
second full wave plate. Compare your results with a
Michel-Levy diagram. This final experimental result
may also be demonstrated by placing a full wave
plate against a plane mirror on top of which is placed
a linear polarizer, which has the same vibration
direction as the fast direction of the full wave plate.

Although the Mueller calculus will predict that
polarized light is extant, it cannot explain the inter-
ference colors caused by phase differences; for an
understanding of these phenomena one must defer to
the Jones calculus.
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THE POINCARE SPHERE PART 2

We are now in a position to understand how
anisotropic materials interact with polarized light
and how compensators, such as the Berek and the de
Senarmont operate to enable the polarized light
microscopist to gain optical information.

When an anisotropic material is viewed between
crossed polars, two extreme possibilities eventuate,
either extinction or the brightest transmission of
polarized light for a given thickness and birefrin-
gence of the sample and wavelength. Of course,
there is an infinitude of other possibilities. The polar-
ized light microscopist takes advantage of one of
these two extremes by rotating the sample to an
extinction position. This means that one of the vibra-
tion directions of the sample must be parallel to
either the vibration direction of the polarizer or the
analyzer; any other orientation will result in trans-
mission of polarized light consistent with the above
restrictions.

When the microscopist then rotates the sample
by 45° with respect to the extinction orientation, the
sample then acts as a retarder with  ±45° and 4°.
The retardance, 8, is dependent on the wavelength of
the light used, as well as the birefringence and thick-
ness of the sample. Under these conditions all possi-
ble retardances are points on a great circle of the
Poincaré sphere. This circle is perpendicular to the
equator and perpendicular to the rotation axis formed
by the center of the sphere and one of the two possi-
ble coordinates on the equator designated by the
azimuthal angle of the retarder, specifically ±45°.
This great circle passes through both the North and
South Poles that represent circularly polarized light
as well as the two points on the equator that repre-
sent horizontal and vertical lineraly polarized light.
(Figure 4).

Compensators

In their simplest sense, the compensators of the
microscopist will move a point from the great circle
of the Poincaré sphere to an extinction position or to
a full transmission position. In practice, since the
human eye cannot remember the brightest or darkest
conditions, compensator manufacturers rely either on
a double rotation or a half-shadow technique (14).
This complication need not concern us here.

There are an infinitude of ways to bring a point
from the great circle so described into an extinction
or maximum brightness position; however, there are
two ways which are most expeditious.

Figure 4

The simplest method to bring about this transfor-
mation is to place a compensator (variable retarder)
into the light path. By tilting an oriented calcite crys-
tal, the Berek compensator, or by sliding wedges of
quartz against each other, the Babinet compensator,
and others such as the Soleil and Ehringhaus, the
total optical system is, ignoring human eye sensitivi-
ty problems, brought to extinction or brightest trans-
mission. Having been calibrated with a phase shifter
of known retardance, the number of degrees of rota-
tion of the compensator's micrometer may be trans-
lated into a birefringence if the wavelength of light
and thickness of the sample are known. The essence
of this is exemplified by merely rotating the Poincaré
sphere around the axis, formed by the center of the
sphere and a point on the equator represented by the
+45' or -45° equitorial positions, by the number of
degrees necessary to reach a horizontal or vertical
linear polarization state along the great circle.

The second method is that of de Senarmont.
This compensator has a X/4 plate attached to it such
that its fast vibration direction is parallel to the vibra-
tion direction of the polarizer. Therefore, any point
on the great circle is transformed into a linear polar-
ization state of unknown azimuth; that is, the resul-
tant point must lie on the equator of the Poincare
sphere.

By rotating the micrometer screw of the de
Senarmont compensator's analyzer that has been cali-
brated against a material of known retardance, the
birefringence of the sample can be determined. As
the analyzer of the de Senarmont compensator is
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rotated, there is a concomitant rotation of the
Poincaré sphere about its polar axis. This rotation
brings the sample to a full extinction or full bright-
ness condition that corresponds to the vertical or hor-
izontal linear polarizer position respectively.

CONCLUSION

The interaction of light with matter is a complex
phenomenon. Polarized light offers clues as to what

BILL C. MIKUSKA

is taking place. In some instances the Mueller calcu-
lus is useful to describe the observed phenomena and
makes correct predictions. In other situations, such
as Experiment 10 and in a paper on the Herzog effect
(15), the Jones calculus is better suited. Although this
paper does not address the Jones calculus explicity,
the reader should be apprised of the differences in
applicability between the Jones (JC) and Mueller cal-
culi (MC).

Appendix: Mueller Matrices

Horizontal Linear Polarizer, 0 = 0°	 Vertical Linear Polarizer, 0 =90°

1 I 0 0 1 —I 0 0

1 I 0 0 —1 1 0 0
M(hp) = 1/2 M(vp)	 1/2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Linear Polarizer, 0=45° Linear Polarizer, 0=45°

1 0 1 0 1 0 —1 0

0 0 0 0 0 0 0 0
M(45p) = 1/2

1 0 1 0
M(-45p) = 1/2 —1 0 1 0

0 0 0 0 0 0 0 0

Linear Retarder,

M(45, 

Mirror (linear

0 = 45°, 6 = 90°

1	 0	 0	 0

0 0	 0 —1
0 0	 1	 0
0	 1	 0	 0

retarder), 0 =0 or ± 90°, 6

Linear Retarder,

M(-45, )l/4) =

= 180°

0 =

1
0

0
0

45°, 6 =

0	 0

0	 0

0	 1

—1	 0

90°

0
1
0
0

1 0 0 0
0 = azimuthal angle of fast transmission axis

0 1 0 0
M(m) =

0 0 —1 0 6	 retardance

0 0 0 —1
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Mueller Calculas vs. Jones Calculas

1. MC can handle depolarization problems whereas
JC cannot. Unpolarized or partially polarized light
cannot be specified by JC matrices since all matrix
elements must be orthogonal.

2. MC is phenomenological and does not depend on
the validity of electromagnetic theory whereas JC is
derived therefrom (however, see references 12, 13).

3. JC retains phase information, if non-normalized
matrices are used, whereas MC cannot handle phase.

4. JC is well-suited to problems dealing with combin-
ing coherent beams whereas MC may be able to do so
with great difficulty.

5. JC is predicated on amplitude transmittance
whereas MC is predicated on intensity transmittance.

6. MC employs the Stokes vector with the first term
specifying intensity whereas JC vectors do not do
this; therefore, the sum of the squares of the matrix
elements must be taken to obtain this information.

7. JC is well suited to determine the explicit outcome
of a series or train of similar optical devices.

8. JC matrices contain 4 elements comprising 8 lin-
early independent constants for polarizers and
retarders; that is, there is no redundant information.
The MC matrices contain 16 elements and only 7 are
independent. The others are redundant.

9. Many of the JC matrix elements are complex
whereas all of the MC matrix elements are real.

10. Both calculi have problems handling non-linear
optical devices.

MATERIALS

Linear polarizers, full wave and 7„/4 plates may be
purchased from the following sources:

American Polarizers, Inc., 141 South Seventh Street,
Reading, PA 19602, PHONEs: (610) 373-5177 or (800)
377-4100; FAX: (610) 373-2229; or website:< www.api-
optics.com >

Edmund Industrial Optics, Sales Department W011,
101 East Gloucester Pike, Barrington, NJ, 08007-1380,

PHONES: (800) 363-1992 or (856) 573-6250; FAX:
(856) 573-6295; E-Mail: < www.sales@edmundop-
tics.com >

McCrone Microscopes and Accessories, 850
Pasquinelli Drive, Westmont, IL, PHONES: (630) 887-
7100, or (800) 622-8122 FAX: (630) 887-7764; or
website: < www.mccrone.com >

The model of the Poiricaré sphere with the 3-D
Cartesian coordinate system contained inside,
Figures 2 and 4, is constructed from a small animal
plastic "exercise ball", a drilled plastic die, and stiff
plastic rods or tubes.
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